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- .. THE STABILITY: OF LAMINAR FLOW PAST A SPHERE*

By J.ffreisch'
SUMMARY

" As a contribution to the prodblem of turbulence on a
surface of rotation, the method of small oscillations is
-applied to the flow past a sphere. It was found that the
method developed for two-dimensional flow is applicable
without modifications. The frictional layer in the vicin-
ity of the stagnation point of a surface of rotatlon is
less stable against small two-dimensional disturbances
than in the stagnation point itself, as proved from an
analysis of the velocity distribution made by Homann,

INTRODUCTION

The prediction of the resistance of moving bodies
is predicated on the knowledge of the conditions under
which the laminar flow in the frictional layer adjacent
to the wall becomes turbulent. The analytical treatments
by Tollmien (references 1, 2), Schlichtung (references 3,
4, 5, 6), and Gortler (references 7, 8) dealt with the
two-~dimensional problem. These. investigations were based
upon tihe method of small oscillations by ascertaining
whether the small oscillations of various freguencies.
superposed on the basic flow are amplified or damped at
g£iven Reynolds numbers. A critical Reynolds number, the
so-called "stability 1imit,¥ can be considered as a first
orientating measure of the stability of laminar flow,
below which the oscillations of all freguencies for the
velocity profile concerned are exactly damped._ This
stability limit can be indicated for the velocity profiles
accompanying pressure gradients and pressure rise in a
two-dimengional frictional layer and the data of these

*"Jber die Stabilitat der Laminarstroming um eine Kugel."
Luftfahrtforschung, vol. 18, no. 10, QOctober 27, 1941,
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calculations used for an approximate prediction of the
transitional inception on aircraft wings.

"An analysis of a surface of rotation im a-flow along
its longitudinal axis, such as is approximately represented
by the airplane fuselage the resistance of which plays an
increasingly important part in the power absorption of
aircraft, would be desiradle bdbut for the following difficulty:

The stability study requires the curves of the laminar
velocity distributions to be known so accurately that even
their curvatures can be reliably indicated; but at the
present time there is little prospect of attaining this
degree of accuracy for a surface of rotation of random
section,

For this reason, the stability theory of the laminar
frictional layer is to be explored on the simplest surface
of rotation, the sphere, for which sufficiently exact ve-
locity distributions in the frictional layer are likely
to be available in the near future.

In the concluding chapter, the only reliable distri-
bution known up to now, Homann's stagnation point profile
(reference 9), is subjected to a stability analysis.

II. GENBRAL DIFFERENTIAL EQUATION OF THE DISTURBANCE

. The derivation of the stability theory for the sphere
flow proceeds from the general Navier-Stokes eguations,
expressed in spherical polar coordinates R, 4, and
(fig. 1) with u, v, and w denoting the velocities in
direction;:of increasing 4, R, and ¢, it affords for
for the axially symmetrical problem

."—' 9:. -_.é = . !
w=0; s ,.-o'» L (1)

_ )
. The equation of continuity reads,

LR (v sin ) + 1 ;;é;
Rsinsde . = % B IR

(%) =0 . (2)

[ iy . . “

and the equations of motion for w and v lhayewthe form




distance n

NACA Techmcal Memorandum No. 1017 3

u du o 1 dp
az*‘xaa+'0R'F e ROB
2 du 1 du cotg#bu
+”(am+ "R+ @ ao-’*' F Y
2 dv
+R’ rY) m) L T (3)
udpv w1 0p
Dt+v R+fa—o—7~ X2
2 dv 1 v | cotgd dv
‘“om+xan+mam+ R 30
2v 2 du 2ucotgd "
—Ei—‘ﬁb_ﬂ"‘“ R‘ -------- ()
The arc length s starting

from stagnation point and the
from the sphere
surface are now introduced as
coordinates

s =Ry,

n=R—R,,
with R, as sphere radius.

Restricted to the flow region
wherein n <« Ry, the elimina-
tion of pressure from (3) and
{4) gives the equation of

motion
Nu dudu dvdu v du
Dtbn+bnbs “Ssdn Tonont? an=+R.,on
L wdv_ Mo dudy_ v dudv
R,dn dtds 0sds 0s® 0sOn
oty 2udu 2 Du
“lsson TR 05" [an=4'bnasi+'ﬂoan'
+ cotgs/Ry Bu 1 ou ¥
¥ R, dnds Ro’sm’s/Robn dn?ds
Po_ cotge/B Mo, 1 v, 2
Tas R, 0s* RS sm’s/Robs RjA0ds
2 Bu , 2colgs/Rydu__ ‘"2u ]
+& R, 08 +=7 Ro’ ds - Rg3sin*s/R,

Let U and V designate the
tangential and normal components
of the axially symmetrical base
flow about the sphere having
stability to small vidrations is
to be analyzed. The superposed
interference motion bhas the
stream function

wis,nt)=plgn) et ., (6)

‘a 1ndicating the spatial natu-

ral frequency and the real part
of ¢ = cp + 1cy 1its phase ve-

locity. The interference ve-
loécities are given by
"‘*mfrs/—mar‘i“‘mw’?‘““"”
R,slze/R. bbt R,lsI:s/.R, ‘u(.—c‘)(‘“w+_") ’
where ¢ eignifiee diffefeﬁii;W)

ation with respect to n,
The fundamental motion equa-
tion of the interference prod-

lem then followe the 1ntroduc-
tion of the flow with velocity
components.
u—U-l—u‘ ve=V-}v*

produced by- superposition of
basic flow and interference
motion, in equation (5).

Restricted to the terms linear
in ¢ 'and with those of subordi-
nate order of magnitude discount~
ed, the general differential
equation reads for the present:

C{U—c) (¢” —atg) — U”'p+—~E (Uw—U’w)
*2a’v"fi-of‘qvl—,l—;[V(w""—a'w’)—V"t‘r’-]

. . b¢ _b(p" R
— 2 —_ E ] — (4
+“[(2<xc 30T U),—.°s+a—bs]

' iy
——';[?’

+ g IR B U —d) 1 p—2(T "+ U] ©)

by referring the velocities to

the velocity of undisturbed flow
U, the arc length to the sphere
radius Ry and the wall distance

as well as the wave length of the
vibration to-a reference length
of the friction layer, say, the
displacement thickness §* 1in a
fixed point of the sphere surface
equation (B8) can also be written
the form

U 0%
Re&: o> 22l

,(m.ﬂkpresse& nondimensionally

U—c) lg"—229) — U p4 3 (Up'— U'g)
- —

i o
s =l Uk Ll s st

L [V (W’”—O‘z /) oy ‘P’]

d9 ¢
2 2 z [/
(2a%c 3o U—UuU"y—= 3s -+ 3s

4- ‘;,cotgs/R.,[(sv—c)mw—z(w"+v’¢')1 )

This linear partial differen-
tial equation of the fourth or-
der represents the most general
motion equation of the disturdbed
frictién layer flow on the sphere.
It differs from the corresponding
equation of two-dimensional-flow
by the addition of the underlined
terms which have the same order
of magnitude as the other terms
2n)the right-hand side of sqQuation
g).

The interference equation ap-
Plies equally in direct proximity
to the stagnation point & = 0
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because U and c  decrease as
sin s/R,, while cotg s/Ryp o}

for

ed, the two-dimensional interfer~-
ence eguation.

The next problem is to prove
that the interference eguation
for the flow past a sphere has
exactly the same particular solu-
tions as the two-dimensional,
despite the additive underlined
terms.

III. SCLUTIONS

Agsuming O Re* as very large

and bearing in mind that

o* c

R Reo
the partial differential egqua-~
tion (9) reduces to Tollmiean's
frictionless interference equa-
tion for two-dimensional flow

(U—q) (¢”"—otg)—U"p=0, . (11)

in which "frictionless solu-
tions" ¢, ,py are identical with
those of the two-dimensional
problem by reason of the same
boundary conditions; hence all
statements made elsewhere apply
here also. 1In the construection
of the solution @z in the crit-
lcal layer U= c¢ the friction
must be taken into account in
form of a transitional function,
as explained in the following.

The laminar basic velocity in
the eritical layer is approxi-
mate to a parabola

U—e= Uy {n—snd + 25 (n—ngt
with the new variabless

1= s = (x Ref Uy)™ "} §=s, . . (13)

defined as in the two-dimension-
al problem and

. (12)

o _1 — n dUS d (14)
n e on ds ﬁ”‘?'ﬁﬁ?*‘a dE 7
the interference equation (9)
then reads'

&

)"‘Un”'P'i'
i 1 g 240
—1Rem[e‘01; e

+“—"R€—{{2a’c———3a’(

Reco

¢]+ [

C [12¢
Y

1 3¢ 1
:-‘a—,,:—T’r,,)—?'a‘,,z o+

2 dU., Ny

The normal component V of

the velocity 1is odbtained from (2),
Ro~» o 1t becomes, as expect- ‘which after omission of the term

2v

slmplifies to
By -
g:-{ 0n+§--cotgs/Ro— . (16)
whence
l f( ——cotgs/R,)dn
—2—Rle— 22 (gt o) — 58 (nt— et
+;"d”g (n+ )

dn,

—2U0y 7? ("c+57l).+ Uy dz
+ 2 cotgs/R, [2 ¢ (no -t 67)>— Uy’ (ne — &2 7?)
- -
+ 58 e e |}
and

(re*— & 7?)

d’U., dng ,

Uy’ df
+-R—°cotgs/no (U & + Uy” e -7)] as)

€2

FU,, S

Limited to the terms linear in ¢
because of the assumably large
Reynolds number Re* equation
(15) affords, after multiplica-
tion by e/U°

b’p s 00 o
+2UI b'l - Ul EQ

5=~

Uo

d¢
+Re Uy 01]+Re
e

e
_l,s—‘-l—l a”‘[ E ¢+2 net
____l_dU. dang Uy dn, net
B,Tn° +Uo rra L e dE
__Cecdn, 1

—dF -I—i—cotg s/ Ry (c ne —%— ne? - —‘ n,’)]

?
Bo5 07 59 o 1 557) _
_—_Ccas‘—gi:—-{—Uo'aCs‘(q—g—:L——tp), (20)
80 that the underlined terms in

(19) are disregarded.
The friction coerrection for the

frictionless flow @, in the

ceritical layer follows from the

e Uy snT——ﬁn)—on + Uy rn)J

« Do) ¥V g

s)

1
+ et ovent e ’7] Dq'bE '*'3

at Erd
+cotgs/}?,[u‘¢(2c+3 U,’en-}-—é- Uy’ ey ) ,a" (e-i-Uo 67)“*'——6’ )-‘“' —(U., - U"e??)]}

e d& 01}“+3U°’ dE o7

By



solution @, in powers of ¢ at
T e=e temutetont .. -« (21)
which joins ‘the frictionleee 80~
‘lution _at some distance. from o
U= c. :
Posting (21) in (20) we get .
with @p, = 1 and multiplying

by -iz
-€ t : .
Ty +—f,—n . ~~—z—-—-(l~| cpm) -
-153%%{ dEm%—;d:g 3
A s S
C‘Z—ne—-;—cotgslﬂo(cn,——%nJ—f———n,)]

(22)

Again disregarding the terms with u

€ the differential egquation for
the transitional function Pz,

is the same as in the two-dimen-

sional problem: namely,
Npey . oy Uo
S —in =i (23)
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The velocity distridbution in
the stagnation point of the
sphere is to be analyzed as
regards its stability against

‘small vibrations,

This velocity profile, whieh
has the same form in the stagna-
tion point of any other surface
of rotation with oether than-van-
iehing curvature. radius, was
derived by Homann (reference 9)
from the hydrodynamic equations
of motion expressed for this
purpose in cylindrical polar:
coordinateez

lb By  1du oty
TR a (s r’+;57—;?+5—z_’)’ -
1 b 10v
+ __9—5?p+\ rbr+bz’)
where u the velocity along the

increasing distance r from the
stagnation point in the tangen-
tial plane at the stagnation
point and v the velocity along
the increasing distance g from

Finally 1t can be readily provedthe stagnation point past the

that the friction-induced solu-
tions in wall proximity ¢3'¢4

themselves are as in the two-4i-
mensional problem. For € —» 0
equation (19) affords the same'
differential equation

. a‘ 3.4 02 3,4
Pt =0

And eince the limiting condis’
tions of the differential inter-
ference equation for flow past
the sphere are also the same as
in the two-dimensional problem,
it proves that the study of sta-
bility of laminar flow past the
sphere follows the very same
method as in the two-dimensional
problem.,

This result suggests the sus
picion that the method of the
two-dimensional problem is not
merely applicable to the sphere
but generally to any surface of
rotation. TFor rigorous proof of
this suspicion we would have to
proceed from the equations of
motion in general orthogonal
coordinates.

IV. THE STABILITY OF LAMINAR YLOW

IN THE STAGNATION POINT OF A

SURFACE 'OF ROTATION

body axls.

Outside of the friction layer
the potential velocity in the
stagnatlion point ig the same as
that toward the plate

-2 ﬁ z ‘(26)

= B Tr; va =
”with the dimensionless wall
distance
=/ E-
L=/ 3 3 (27)

and the formula: for the stream

function
JBv 51 ()

Vo=
Homann's differential ‘equation °
for the stagnation-point pro-
file on the surface of rotation
reads:

(28)

e 4 2 £ 0 o 01° 41 = 0 (29)
with £ ({) = U ) 4ne atmen-

a

sionless velocity in the fric-
tion layer.
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It differs from Hiemenz's differential equation for two-
dimensional stagnation-point flow merely by the number 2
in the second term; it has the same limiting conditions
f=f'=0 for { =0, and f' =1 for ¢ —><, The
solution is illustrated in figure 2. :

For the stability study it further requires an ac-
ceptable approximation of the velocity distribution, for
which in support of previous calculations (reference 10)
an expression of the form

U 1-( ~-392 (n=2,3,4...) (30)
Ua

is employed, in conjunction with the equation jllustrated
in figure 2:
U

5= = 1= (1-0.4891 )" (31)
a

Figure 3 contains the polar diagram for determining the
neutral stability curve (fig. 4) which separates stable
from unstable interference attitudes in the plane spanned
by Reynolds number and interference freguency. The neu-
tral stability curve for the two-dimensional stagnation~
point profile according to Hiemenz is included for con-

- - . s *
trast. It is seen that the stability limit Recritical

on the three-dimensional stagnation-point profile is
about a third of that of the two-dimensional profile.

As a consequence, the laminar flow near the stagnation
point of a surface of rotation is obviously more unstable
in the case of small vibrations than the two-dimensional
stagnation-point flow.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure 2.~ Velocity distribution in the friction layer at the stagnatlon
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